Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470766

RESUMEN

Developing prolonged antigen delivery systems that mimic long-term exposure to pathogens appears as a promising but still poorly explored approach to reach durable immunities. In this study, we have used a simple technology by which His-tagged proteins can be assembled, assisted by divalent cations, as supramolecular complexes with progressive complexity, namely protein-only nanoparticles and microparticles. Microparticles produced out of nanoparticles are biomimetics of secretory granules from the mammalian hormonal system. Upon subcutaneous administration, they slowly disintegrate, acting as an endocrine-like secretory system and rendering the building block nanoparticles progressively bioavailable. The performance of such materials, previously validated for drug delivery in oncology, has been tested here regarding the potential for time-prolonged antigen release. This has been completed by taking, as a building block, a nanostructured version of p30, a main structural immunogen from the African swine fever virus (ASFV). By challenging the system in both mice and pigs, we have observed unusually potent pro-inflammatory activity in porcine macrophages, and long-lasting humoral and cellular responses in vivo, which might overcome the need for an adjuvant. The robustness of both innate and adaptive responses tag, for the first time, these dynamic depot materials as a novel and valuable instrument with transversal applicability in immune stimulation and vaccinology.

2.
J Vet Res ; 67(4): 503-508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130453

RESUMEN

Introduction: The molecular contamination of an animal facility was investigated during and after an infection with highly pathogenic African swine fever virus (ASFV) among domestic pigs. The investigation evaluated the risk of indirect transmission of the disease and indicated points that may facilitate cleaning and disinfection processes. Material and Methods: Six domestic pigs were infected oronasally with the highly pathogenic Georgia 2007 strain. Environmental samples from the floors, walls, rubber floor mats, feeders, drinkers, high-efficiency particulate-absorbing filter covers and doors were collected 7 days post infection (dpi), 7 days later and 24 h after disinfection of the facility. The samples were investigated by real-time PCR and in vitro assays to find genetic traces of ASFV and infectious virus. Results: Typical clinical outcomes for ASF (i.e. fever, apathy, recumbency and bloody diarrhoea) were observed, and all animals died or required euthanasia before or at 9 dpi. No infectious virus was found in environmental samples at the sampling time points. Genetic traces of ASFV were found in all locations except the doors. The initial virus load was calculated using real-time PCR threshold cycle values and was the highest at the drain. A statistically significant decrease of virus load over time was found on non-porous surfaces mechanically cleaned by water (the floor and drain). Conclusion: The gathered data confirmed different routes of virus excretion (oral and nasal, faeces and urine, and aerosol) and showed virus locations and different initial concentrations in the animal facility. Maintaining the facility with mechanical cleaning and using personal protection (gloves) and hand disinfection may efficiently minimise the risk of further virus spread. Together with the results of previously published studies, the present investigations' failure to isolate infectious virus may suggest that if stable environmental conditions are assured, the time needed before the introduction of new herds into previously ASF-affected farm facilities could be shortened and in this way the economic losses caused by the disease outbreak mitigated.

3.
Cell Death Dis ; 14(12): 838, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110339

RESUMEN

Acute infection and chronic infection are the two most common fates of pathogenic virus infections. While several factors that contribute to these fates are described, the critical control points and the mechanisms that underlie infection fate regulation are incompletely understood. Using the acute and chronic lymphocytic choriomeningitis virus (LCMV) infection model of mice, we find that the early dynamic pattern of the IFN-I response is a differentiating trait between both infection fates. Acute-infected mice generate a 2-wave IFN-I response while chronic-infected mice generate only a 1-wave response. The underlying cause is a temporal difference in CD8 T cell-mediated killing of splenic marginal zone CD169+ macrophages. It occurs later in acute infection and thus enables CD169+ marginal zone macrophages to produce the 2nd IFN-I wave. This is required for subsequent immune events including induction of inflammatory macrophages, generation of effector CD8+ T cells and virus clearance. Importantly, these benefits come at a cost for the host in the form of spleen fibrosis. Due to an earlier marginal zone destruction, these ordered immune events are deregulated in chronic infection. Our findings demonstrate the critical importance of kinetically well-coordinated sequential immune events for acute infection control and highlights that it may come at a cost for the host organism.


Asunto(s)
Coriomeningitis Linfocítica , Ratones , Animales , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/fisiología , Infección Persistente , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos , Macrófagos/patología
4.
Commun Biol ; 6(1): 487, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165099

RESUMEN

Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.


Asunto(s)
Linfocitos T CD4-Positivos , VIH-1 , Uso de Codones , VIH-1/fisiología , ARN Viral/genética , Latencia del Virus/genética
5.
Vaccines (Basel) ; 11(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37112737

RESUMEN

This study aimed to evaluate the effects of feeding spray-dried porcine plasma (SDPP) on the protection afforded by the BA71∆CD2 African swine fever virus (ASFV) vaccine prototype. Two groups of pigs acclimated to diets without or with 8% SDPP were intranasally inoculated with 105 plaque-forming units (PFU) of live attenuated ASFV strain BA71∆CD2 and, three weeks later, left in direct contact with pigs infected with the pandemic Georgia 2007/01 ASFV strain. During the post-exposure (pe) period, 2/6 from the conventional diet group showed a transient peak rectal temperature >40.5 °C before day 20 pe, and some tissue samples collected at 20 d pe from 5/6 were PCR+ for ASFV, albeit showing Ct values much higher than Trojan pigs. Interestingly, the SDPP group did not show fever, neither PCR+ in blood nor rectal swab at any time pe, and none of the postmortem collected tissue samples were PCR+ for ASFV. Differential serum cytokine profiles among groups at vaccination, and a higher number of ASFV-specific IFNϒ-secreting T cells in pigs fed with SDPP soon after the Georgia 2007/01 encounter, confirmed the relevance of Th1-like responses in ASF protection. We believe that our result shows that nutritional interventions might contribute to improving future ASF vaccination strategies.

6.
Cell Rep ; 42(2): 112123, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36795562

RESUMEN

The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.


Asunto(s)
Reactividad Cruzada , Virosis , Ratones , Animales , Células Dendríticas , Linfocitos T CD8-positivos , Inmunoterapia
7.
PLoS Pathog ; 18(11): e1010931, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350837

RESUMEN

African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vacunas Virales , Porcinos , Animales , Proteínas Virales , Sus scrofa , Vacunación , Inmunidad Innata
9.
Viruses ; 13(9)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578263

RESUMEN

African swine fever (ASF) has become the major threat to the global swine industry. Lack of available commercial vaccines complicates the implementation of global control strategies. So far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the experimental level. The implementation of molecular techniques has allowed the generation of a collection of deletion mutants lacking ASFV-specific virulence factors, some of them with promising potential as vaccine candidates against the pandemic genotype II ASFV strain currently circulating in Africa, Europe, Asia and Oceania. Despite promising results, there is room for improvement, mainly from the biosafety point of view. Aiming to improve the safety of BA71∆CD2, a cross-protective recombinant live attenuated virus (LAV) lacking the ASFV CD2v gene (encoding ß-glucuronidase as a reporter gene) available in our laboratory, three new recombinants were generated using BA71∆CD2 as a template: the single mutant BA71∆CD2f, this time containing the fluorescent mCherry reporter gene instead of CD2v, and two double recombinants lacking CD2v and either the lectin gene (EP153R) or the uridine kinase (UK) gene (DP96R). Comparative in vivo experiments using BA71∆CD2f, BA71∆CD2DP96R and BA71∆CD2EP153R recombinant viruses as immunogens, demonstrated that deletion of either DP96R or EP153R from BA71∆CD2f decreases vaccine efficacy and does not improve safety. Our results additionally confirm ASFV challenge as the only available method today to evaluate the protective efficacy of any experimental vaccine. We believe that understanding the fine equilibrium between attenuation and inducing protection in vivo deserves further study and might contribute to more rational vaccine designs in the future.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/prevención & control , Anticuerpos Antivirales/sangre , Eliminación de Gen , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Células Cultivadas , Genotipo , Macrófagos/virología , Masculino , Porcinos , Eficacia de las Vacunas , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Factores de Virulencia/genética , Replicación Viral
10.
Trends Immunol ; 42(10): 852-855, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34561159

RESUMEN

A fundamental unsolved issue in vaccine design is how neutralizing antibodies and cytotoxic CD8+ T cells cooperate numerically in controlling virus infections. We hypothesize on a viewpoint for the multiplicative cooperativity between neutralizing antibodies and CD8+ T cells and propose how this might be exploited for improving vaccine-induced protective immunity.


Asunto(s)
Linfocitos T CD8-positivos , Vacunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunidad
11.
Front Immunol ; 12: 800188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003125

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.


Asunto(s)
Pollos/genética , Pollos/virología , Resistencia a la Enfermedad/genética , Subtipo H7N1 del Virus de la Influenza A , Gripe Aviar/genética , Animales , Gripe Aviar/virología , RNA-Seq
12.
Viruses ; 12(12)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371460

RESUMEN

African swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania. Previous results from our laboratory have demonstrated the ability of BA71∆CD2, a recombinant LAV lacking CD2v, to confer protection against homologous (BA71) and heterologous genotype I (E75) and genotype II (Georgia2007/01) ASFV strains, both belonging to same clade (clade C). Here, we extend these results using BA71∆CD2 as a tool trying to understand ASFV cross-protection, using phylogenetically distant ASFV strains. We first observed that five out of six (83.3%) of the pigs immunized once with 106 PFU of BA71∆CD2 survived the tick-bite challenge using Ornithodoros sp. soft ticks naturally infected with RSA/11/2017 strain (genotype XIX, clade D). Second, only two out of six (33.3%) survived the challenge with Ken06.Bus (genotype IX, clade A), which is phylogenetically more distant to BA71∆CD2 than the RSA/11/2017 strain. On the other hand, homologous prime-boosting with BA71∆CD2 only improved the survival rate to 50% after Ken06.Bus challenge, all suffering mild ASF-compatible clinical signs, while 100% of the pigs immunized with BA71∆CD2 and boosted with the parental BA71 virulent strain survived the lethal challenge with Ken06.Bus, without almost no clinical signs of the disease. Our results confirm that cross-protection is a multifactorial phenomenon that not only depends on sequence similarity. We believe that understanding this complex phenomenon will be useful for designing future vaccines for ASF-endemic areas.


Asunto(s)
Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Protección Cruzada/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/genética , Animales , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Células COS , Línea Celular , Chlorocebus aethiops , Genotipo , Inmunización , Inmunoglobulina G/inmunología , Porcinos , Proteínas Virales/inmunología
14.
JAMA Oncol ; 6(7): 1063-1067, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271353

RESUMEN

Importance: Therapies targeting the programmed cell death 1 (PD-1) receptor or its ligand (PD-L1), such as the humanized monoclonal antibody durvalumab, have shown durable clinical responses in several tumor types. However, concerns about the safety and feasibility of PD-1/PD-L1 blockade in HIV-1-infected individuals have led to the exclusion of these patients from clinical trials on cancer immunotherapies. Objective: To evaluate the feasibility and safety of durvalumab treatment in patients with advanced cancer and virologically controlled HIV-1 infection. Design, Setting, and Participants: The DURVAST study was a nonrandomized, open-label, phase 2 clinical trial in patients with any solid tumor type in which anti-PD-1 or anti-PD-L1 antibodies have approved indications or for which there are data of antitumoral activity with no other available curative therapy. All patients had basal undetectable plasma viremia while undergoing combination antiretroviral therapy. Interventions: Treatment consisted of intravenous infusion of durvalumab (1500 mg every 4 weeks) until disease progression or unacceptable toxic effects. Main Outcomes and Measures: Adverse events were graded with the use of the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03. Tumor response was evaluated using the Response Evaluation Criteria in Solid Tumors version 1.1. Results: A total of 20 HIV-1-infected patients with advanced cancer were enrolled; 16 (80%) were male, the median (range) age was 54 (30-73) years, and 12 (60%) had progressed with previous cancer treatment lines. A median (range) of 4 (1-16) cycles of durvalumab were administered. Drug-related adverse events were observed in 50% of patients, and all were grade 1 and 2 (mainly diarrhea, asthenia, and arthromyalgia). Four of 16 response-evaluable patients (25%) had a partial response. Five patients (31%) had stable disease, including 4 with durable stable disease (disease control rate of 50%). CD4+ and CD8+ T-cell counts and plasma HIV-1 viremia remained stable throughout the study. Conclusions and Relevance: Durvalumab treatment was feasible and safe in HIV-1-infected patients with cancer receiving combination antiretroviral therapy. HIV-1-infected patients on suppressive antiretroviral therapy with advanced cancer should have access to cancer immunotherapy treatments. Trial Registration: ClinicalTrials.gov Identifier: NCT03094286.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Femenino , VIH-1 , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
15.
J Exp Med ; 217(3)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31816635

RESUMEN

Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNß as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors.


Asunto(s)
Interferón Tipo I/inmunología , Factores de Transcripción/inmunología , Animales , Células Dendríticas/inmunología , Femenino , Inflamación/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli I-C/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Transcripción Genética/inmunología
16.
PLoS Comput Biol ; 15(11): e1007401, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31693657

RESUMEN

The novel therapies with immune checkpoint inhibitors hold great promises for patients with chronic virus infections and cancers. This is based mainly on the partial reversal of the exhausted phenotype of antigen-specific cytotoxic CD8 T cells (CTL). Recently, we have shown that the restoration of HIV-specific T cell function depends on the HIV infection stage of an infected individual. Here we aimed to answer two fundamental questions: (i) Can one estimate growth parameters for the HIV-specific proliferative responsiveness upon PD-L1 blockade ex vivo? (ii) Can one use these parameter estimates to predict clinical benefit for HIV-infected individuals displaying diverse infection phenotypes? To answer these questions, we first analyzed HIV-1 Gag-specific CD8 T cell proliferation by time-resolved CFSE assays and estimated the effect of PD-L1 blockade on division and death rates, and specific precursor frequencies. These values were then incorporated into a model for CTL-mediated HIV control and the effects on CTL frequencies, viral loads and CD4 T cell counts were predicted for different infection phenotypes. The biggest absolute increase in CD4 T cell counts was in the group of slow progressors while the strongest reduction in virus loads was observed in progressor patients. These results suggest a significant clinical benefit only for a subgroup of HIV-infected individuals. However, as PD1 is a marker of lymphocyte activation and expressed on several lymphocyte subsets including also CD4 T cells and B cells, we subsequently examined the multiple effects of anti-PD-L1 blockade beyond those on CD8 T cells. This extended model then predicts that the net effect on HIV load and CD4 T cell number depends on the interplay between positive and negative effects of lymphocyte subset activation. For a physiologically relevant range of affected model parameters, PD-L1 blockade is likely to be overall beneficial for HIV-infected individuals.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/terapia , Apoptosis , Antígeno B7-H1/fisiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/fisiología , División Celular , Proliferación Celular , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Activación de Linfocitos/inmunología , Modelos Teóricos , Linfocitos T Citotóxicos/inmunología , Carga Viral
17.
Genome Res ; 29(6): 907-919, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31138618

RESUMEN

The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus-immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here, we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. First, we found an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion, and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase.


Asunto(s)
Interacciones Huésped-Patógeno , Modelos Biológicos , Biología de Sistemas , Virosis/virología , Fenómenos Fisiológicos de los Virus , Enfermedad Aguda , Animales , Biomarcadores , Enfermedad Crónica , Biología Computacional/métodos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Celular , Inmunidad Humoral , Mediadores de Inflamación/metabolismo , Ratones , Bazo/inmunología , Bazo/metabolismo , Biología de Sistemas/métodos
18.
Front Immunol ; 10: 1002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130969

RESUMEN

The host immune response against infection requires the coordinated action of many diverse cell subsets that dynamically adapt to a pathogen threat. Due to the complexity of such a response, most immunological studies have focused on a few genes, proteins, or cell types. With the development of "omic"-technologies and computational analysis methods, attempts to analyze and understand complex system dynamics are now feasible. However, the decomposition of transcriptomic data sets generated from complete organs remains a major challenge. Here, we combined Weighted Gene Coexpression Network Analysis (WGCNA) and Digital Cell Quantifier (DCQ) to analyze time-resolved mouse splenic transcriptomes in acute and chronic Lymphocytic Choriomeningitis Virus (LCMV) infections. This enabled us to generate hypotheses about complex immune functioning after a virus-induced perturbation. This strategy was validated by successfully predicting several known immune phenomena, such as effector cytotoxic T lymphocyte (CTL) expansion and exhaustion. Furthermore, we predicted and subsequently verified experimentally macrophage-CD8 T cell cooperativity and the participation of virus-specific CD8+ T cells with an early effector transcriptome profile in the host adaptation to chronic infection. Thus, the linking of gene expression changes with immune cell kinetics provides novel insights into the complex immune processes within infected tissues.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Macrófagos/inmunología , Transcriptoma , Enfermedad Aguda , Animales , Enfermedad Crónica , Citocinas/inmunología , Redes Reguladoras de Genes , Masculino , Ratones Endogámicos C57BL
19.
PLoS One ; 11(11): e0166414, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27835674

RESUMEN

Single nucleotide polymorphisms (SNPs) located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity.


Asunto(s)
Asma/genética , Cromosomas Humanos Par 17/química , Proteínas del Huevo/inmunología , Activación de Linfocitos/efectos de los fármacos , Proteínas de la Membrana/inmunología , Proteínas de Neoplasias/inmunología , Fitohemaglutininas/farmacología , Alelos , Asma/inmunología , Asma/patología , Calcio/inmunología , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Cromosomas Humanos Par 17/inmunología , Proteínas del Huevo/genética , Expresión Génica , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-2/genética , Interleucina-2/inmunología , Pulmón/inmunología , Pulmón/patología , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Riesgo , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/patología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/patología
20.
Transpl Immunol ; 35: 1-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26836476

RESUMEN

BACKGROUND: Regulatory B (Breg) and T (Treg) cells represent a biomarker for tolerance in transplant patients. Despite the importance of Treg and Breg in transplantation and the suggested crosstalk between both suppressive cell populations, little is known on how they are influenced by long-term immunosuppressive treatment. The aim of the present study was to investigate the effect of different immunosuppressive drugs used in routine clinical practice on Treg and Breg cell numbers. METHODS: Thirty-six kidney transplant recipients with stable graft function were recruited and classified according to their concomitant therapy: 22 patients received calcineurin inhibitors (CNI) and 14 patients received mammalian target of rapamycin (mTOR) inhibitors. A group of 8 healthy untreated subjects was included as control. Absolute numbers of peripheral blood-derived IL10-producing B cells (CD19(+)IL10(+)), CD19(+)CD24(hi)CD38(hi) transitional B cells and Treg cells (CD4(+)CD25(+)FOXP3(+)) were quantified in all KT patients and controls by flow cytometry. RESULTS: CD19(+)CD24(hi)CD38(hi) transitional B cells increased over time and seem to be related with long-term therapeutic graft survival irrespective of the treatment regimen. CNI and mTOR inhibitors significantly reduced numbers of Breg cells when compared with healthy individuals, whereas mTOR inhibitors expanded Treg cells in comparison with CNI drugs. CONCLUSIONS: Bridging the drug-mediated reduction of Breg cell numbers in vivo with the requirements of Breg cells for long-term transplant success remains an as yet unresolved task for therapeutic intervention. Further larger cohort studies that evaluate the effect of different treatment regimen on defined lymphocyte subpopulations are warranted.


Asunto(s)
Linfocitos B Reguladores/inmunología , Inhibidores de la Calcineurina/administración & dosificación , Trasplante de Riñón , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Inmunología del Trasplante/efectos de los fármacos , Antígenos CD/inmunología , Femenino , Humanos , Interleucina-10/inmunología , Masculino , Serina-Treonina Quinasas TOR/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...